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Film drainage between two drops with viscosity equal to that of the matrix fluid is
studied using a numerical method that can capture both the external problem of two
touching drops and the inner problem of pressure-driven local film drainage, without
assumptions about the dimensions of the film or the use of lubrication approximations.
We use a non-singular boundary integral method that has sufficient stability and
accuracy to simulate film thicknesses down to and smaller than 10−4 times the undefor-
med drop radius. After validation of the method we investigate the validity of various
results obtained from simple film-drainage models and asymptotic theories. Our
results for buoyancy-driven collisions are in agreement with a recently developed
asymptotic theory. External-flow-driven collisions are different from buoyancy-driven
collisions, which means that the internal circulation inside the drop plays a significant
role in film drainage, even for small capillary numbers, as has been recently shown
(Nemer et al., Phys. Rev. Lett., vol. 92, 2004, 114501). Despite that, we find excellent
correspondence with simple drainage models when considering the drainage time only.

1. Introduction
Drop break-up and coalescence are the two main competing mechanisms in the

microstructural evolution of blends that determine the final drop-size distribution and
thus the final properties (see e.g. Tucker III & Moldenaers 2002 for a review). While
break-up is a relatively well-understood phenomenon that is described quite well with
various theories and numerical methods, as e.g. reviewed by Stone (1994), coalescence
is much more complicated and there are still some unsolved problems.

Classically, coalescence is modelled as an outer problem of two touching spherical
drops and an inner problem of pressure-driven film drainage. Coupling these two is
complicated, since the dimensions of the film are many times smaller than the dimen-
sions of the individual drops. Furthermore, coalescence is favoured by gentle collisions,
where deformations are small, yet an accurate description of these deformations is
vital. Therefore, most studies focus on film drainage between drops make assumptions
about the coupling between the outer problem and the inner problem, and use
asymptotic theories.

The inner problem is subdivided into three stages: approach, which can be con-
sidered as the motion of two freely and independently moving drops, film drainage,
where the matrix fluid between the two drops is squeezed out, and film rupture, the
point at which van der Waals forces rupture the film and coalescence occurs.
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The film-drainage stage is the limiting step in this process, thus a thorough under-
standing of this phenomenon is necessary to calculate collision efficiencies, see for
example Rother, Zinchenko & Davis (1997), Rother & Davis (2001), Bladwzdziewicz,
Wajnryb & Loewenberg (1999). Analytical solutions for the drainage between flat
interfaces with various mobilities have been reviewed by Chesters (1991).

When assuming small deformations, film drainage can be described by an asympto-
tic theory, yielding a set of coupled integro-differential equations. Two typical assump-
tions concerning the coupling of the global problem to the local problem are the cases
of constant approach force and constant approach velocity. Yiantsios & Davis (1990,
1991) made an important step for thin-film descriptions by coupling the velocity of the
surface and the tangential stress acting upon the surface via a local boundary integral
method. Examples of numerical studies on the local film drainage are numerous, and
often include the effects of surfactants (see e.g. Li 1994, Rother et al. 1997; Bazhlekov,
Chesters & van de Vosse 2000; Chesters & Bazhlekov 2000; Valkovska, Danov &
Ivanov 2000; Yeo et al. 2003). What is lacking in the literature is a justification of
the validity of the assumptions and couplings made. It is generally assumed that the
external velocity does not play a role in film drainage for small capillary numbers.
However, it has been shown recently that the external flow can halt the drainage
(Cristini, Blawzdziewicz & Loewenberg 2001; Nemer et al. 2004). Besides showing this
effect, these authors also provided a theory which incorporates the onset of a stationary
state for drops in a flow-driven head-on collision, and gave an accurate prediction of
the stationary film thickness, validated with boundary integral simulations.

Boundary integral methods are typically used to simulate the approach stage, and
are considered to provide the exact solution of the flow problem for Newtonian, iner-
tialess drops. Stability and accuracy requirements become stricter for drops in close
approach and at small capillary numbers, which limits the use of these methods,
as they fail at relative large film thicknesses and relative large capillary numbers
(Rother et al. 1997). More complex algorithms are required with an extremely fine
discretization of the interface (Zinchenko & Davis 2005). In contrast to this, a non-
singular boundary integral method is considerably more accurate and stable and thus
more suited to study film drainage (Bazhlekov, Anderson & Meijer 2004).

The objective of this work is to investigate the film-drainage process as function of
the capillary number and the drop radius, while maintaining a full drop description;
the influence of the viscosity ratio between drop and matrix fluid is not studied. In
particular we are interested in comparing numerical results with asymptotic theories
and investigate the validity of the assumptions made therein. Furthermore, we address
some questions that were raised recently after a series of experiments (Leal 2004).

This paper is organized as following. First, in § 2 the formulation of the flow
problem is presented. Next, the method to solve the resulting equations is discussed
in § 3. Using a full drop description, the validity of various results from asymptotic
theories is tested, and subsequently the drainage time of head-on collisions between
two viscous drops is investigated. The results are compared to recently published
experimental data, obtained in a four-roll mill, see § 4. Finally, conclusions are drawn
in § 5.

2. Mathematical formulation
Drops with deformable interfaces subjected to an external flow or an external force

are considered. Both the drop phase and matrix fluid are Newtonian and incom-
pressible and, since highly viscous drops are considered, inertia terms are neglected.
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Figure 1. Schematic representation of two coalescing drops in a matrix fluid with density
ρ0 = ρ; ρ1 = ρ + �ρ, viscosity µ0 = µ; µ1 = λµ.

This reduces the problem to Stokes flow. The governing equations for the full domain
of each phase are:

−∇pi + µi∇2ui + ρi g = 0,

∇ · ui = 0,

}
i = 0, 1, 2, (2.1)

where p is the pressure, µ the viscosity, ρ the density and u the velocity. The index
i refers to different phases, where the matrix phase is indicated by i = 0, see also
figure 1. The buoyancy term ρi g in equation (2.1) acts as a body force. Buoyancy
effects are considered since they give an opportunity to move drops without the
need of an external flow. If an external flow is considered, the velocity at infinity is
prescribed:

u∞(x) = GL · x, (2.2)

where G represents the strength of the flow and L is a tensor which describes the
flow type. For both cases, the boundary conditions at the matrix–drop interface are
continuity of velocity,

u0(x) = ui(x), (2.3)

and the stress balance,

(Π0(x) − Πi(x)) · n(x) = f (x). (2.4)

The stress tensor in the ith fluid can be written as

Π i = −pi I + µi(∇ui + (∇ui)
c), (2.5)

with I the unit tensor. The vector f in equation (2.4) represents the jump in stress
across the interface. The interfacial forces considered here are the capillary pressure
and the disjoining pressure. The buoyancy term in equation (2.1) can also be expressed
as an interfacial force, since this term can be considered as an additional hydrostatic
pressure, correcting the pressure in the ith fluid by the term −ρi(g · x). So finally f
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becomes

f (x) =

(
2σκ(x) − H

6πh3(x)
± �ρ(g · x)

)
n(x), (2.6)

where σ is the interfacial tension, κ the local curvature, H the effective Hamaker
constant, h the local minimum distance to the other interface, and �ρ the absolute
density difference between the drop and the matrix phase. The curvature κ is defined
as κ(x) = ∇s · n(x), with ∇s = (I − nn) · ∇ the surface gradient operator. Finally, the
kinematic condition at the interface is

dx
dt

= u(x, t). (2.7)

We use the boundary integral method (BIM) to calculate the velocity. Since we
consider the limit of Stokes flow for two Newtonian fluids, the velocity only depends
on the location of the interfaces, and, therefore, this method is applicable. That only
the interface needs to be described is also the main advantage of the BIM; thus the
method allows a detailed resolution of the film with limited computational effort. The
BIM gives the velocity at any point x0 on the surface S as (Rallison & Acrivos 1978;
Pozrikidis 1992):

(λ + 1)u(x0) = 2u∞(x0) − 1

4πµi

∫
S

G(x0, x) · f (x) dS(x)

− λ − 1

4π

∫
S

u(x) · T(x, x0) · n(x) dS(x), (2.8)

where S includes all surfaces. In this equation G represents the Stokeslet, also known
as the single-layer potential, and T the stresslet, also known as the double-layer
potential. Only flows in unbounded regimes (no walls or solid objects in the domain)
are considered in this work. In that case the free-space kernels are defined as

G(x0, x) = G(x̂) =
I

|x̂| +
x̂ x̂
|x̂|3 ,

T(x, x0) = T(x̂) = −6
x̂ x̂ x̂
|x̂|5 ,

⎫⎪⎪⎬
⎪⎪⎭

(2.9)

with x̂ = x − x0.

2.1. Dimensionless equations

Often it is convenient to recast equations into their non-dimensional form, since
that facilitates a comparison between different situations. Two different scalings are
introduced: one for external-flow and one for buoyancy-driven coalescence.

For the external flow case the following dimensionless parameters are introduced:

u = u∗RG, p = p∗ σ

R
, µi = λ∗µ0, ∇ =

∇∗

R
, κ =

κ∗

R
, h = h∗R, t =

t∗

G
, (2.10)

where ∗ indicates a dimensionless parameter. R is the undeformed drop radius (we
will assume here for simplicity only equal-sized drops, so there is no need to introduce
an equivalent drop radius), G is the shear or elongational rate, λ is the viscosity ratio
between the drop and matrix phases. In addition to h all other lengths are scaled
with R. We will only consider equal viscosities, so λ= 1, in which case the term in
front of the second integral on the right-hand side of equation (2.8) vanishes, and
the unknown velocity u is no longer found on the right-hand side, thus eliminating
the need for a matrix inversion or an iterative procedure. Other difficulties when
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simulating cases with λ �= 1 include the need for highly efficient solvers (Zinchenko,
Rother & Davis 1997) and an extreme influence of global errors on the solution in
the whole domain, particularly in the film (Bazhlekov et al. 2004).

In what follows only dimensionless parameters are considered (unless stated
otherwise), and the index ∗ is dropped. The BIM formulation becomes

u(x0) = u∞(x0) − 1

8π

∫
S

G(x0, x) · f (x) dS(x), (2.11)

and the stress jump in dimensionless form is

f (x) =
1

Ca

(
2κ(x) − A

h3(x)

)
n(x), (2.12)

in which the two dimensionless parameters Ca and A appear. Ca is the capillary
number, the ratio between the viscous forces and the interfacial forces, and A is the
dimensionless Hamaker parameter:

Ca =
RGµ

σ
, A =

H

6πσR2
. (2.13)

Since λ= 1, equation (2.11) is valid for the whole domain, not just for the drop surface
(Pozrikidis 1992).

In the buoyancy case the same scaling as for external-driven collisions is used (see
equation (2.10)), except for a different characteristic velocity and time scale:

u = u∗ �ρR2g

µ
, t = t∗ µ

�ρRg
, (2.14)

where g is the gravitational acceleration. The dimensionless form of the stress jump
in this case becomes

f (x) =

[
1

Bo

(
2κ(x) − A

h3(x)

)
± x2

]
n(x), (2.15)

where Bo is the Bond number, defined as

Bo =
�ρgR2

σ
. (2.16)

The additional term in equation (2.15), x2, is the local x2-coordinate scaled with R; the
gravity is considered parallel to the x2-axis and the sign is determined by whether
the drop rises or sinks due to the density difference. We also define the film radius a

and the distance between the centres of mass of the two drops δ, as can be seen in
figure 1. Both a and δ are scaled with R.

In most thin-film simulations different scalings based on the film radius are used.
Since in this paper we often compare our results to those of thin-film simulations,
these scaling relationships are also given here. The dimensionless parameters are
indicated with a bar:

h =
hR

2a2
, t =

2tσa

µR2
, A =

HR4

4πσa6
. (2.17)

In the dimensionless variables used here this becomes

h =
h∗

2a∗2
, tbuo =

2t∗a∗

Bo
, t ext =

2t∗a∗

Ca
, A =

3A

2a∗6
. (2.18)
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The subscript buo refers to buoyancy-driven collisions, ext refers to external-flow-
driven collisions.

3. Numerical scheme
Since only head-on collisions are studied, an axisymmetric framework can be used,

and in this case an analytical azimuthal integration is combined with surface integrals,
that reduce to line integrals over an arclength s. The last are calculated by summing
over N line segments. We use the non-singular contour-integral representation of
Bazhlekov et al. (2004). For the axisymmetric case, the contribution of a surface part
sj , between xj and xj+1, with constant f is (see Bazhlekova & Bazhlekov 2003)∫

sj

fn(x)G(x̂) · n(x) ds(x) = fn(I
G(x0, xj+1) − IG(x0, xj )), (3.1)

where

fn = f · n (3.2)

and IG(x0, xj ) is the integration over the circle that makes up the contour of the
surface in three-dimensional space, and can be expressed in complete elliptic integrals
of the first and second kind. These elliptic integrals are calculated using polynomials of
Abramowitz & Stegun (1965). Equation (3.1) can be rewritten to give the contribution
over a line segment between two nodes as∫

sj

fn(x)G(x̂) · n(x) ds(x) = (fn(xj ) − fn(xj+1))I
G
j , (3.3)

with IGj evaluated in the middle of the line segment. This leads to a formulation where
only gradients in f are taken into account, similar to the three-dimensional case.

The curvature and normal vector are calculated using the local parabola fitting
method of Davis (1999). This proved to be a quick and stable method, especially
for non-uniform meshes. Notice that the normal vector does not enter the boundary-
integral calculation, but is used to split the velocity into a normal and a tangential
part, motivation for which is given below.

For the time integration a multiple time-step method is used. The kernel calculation,
which is the most expensive part in terms of computational time, is performed only
every M steps, while all other parameters are calculated at every time step (Bazhlekov
et al. 2004). Here M = 100 in all simulations. Time integration during a small time-step
was performed with a second-order Runge–Kutta method. Although the multi-step
scheme provides stability, the time-step required for accuracy is smaller, especially
with decreasing film thickness. In all cases the time step was made proportional to
the capillary number (or Bond number in case of a buoyancy-driven collision) and
to the square root of the minimal film thickness: �t ∝ Cah

1/2
min, with an upper limit of

10−5 to ensure stability and a lower limit of 10−9 to keep computational time within
limits. The proportionality factor was in the order of 10−3.

The hydrodynamical velocity is split into two parts: a normal and a tangential
component:

un = unn = (u · n)n,

ut = ut t = (u · t)t,

}
(3.4)

where t is the vector tangential to the interface. The position of the interface is
updated with the normal part of the hydrodynamical velocity and an additional
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Nodes hmin at t = 1.93 Rel. error hmin at t = 10 Rel. error

100 1.5225 × 10−4 0.574 8.8321 × 10−5 0.0139
200 2.5873 × 10−4 0.276 8.7664 × 10−5 0.00639
400 3.2288 × 10−4 0.097 8.7302 × 10−5 0.00224
800 3.5760 × 10−4 — 8.710 × 10−5 —

Table 1. Convergence of the minimal film thickness at two moments in time. The relative
error is based on the 800 node result.

term:
dx
dt

= un(x, t) + v(x, t). (3.5)

The additional velocity in equation (3.5), v(x, t), is tangential to the interface and
thus will not influence the solution. It is only used for nodal redistribution to keep
the mesh in good shape and move nodes to locations where a finer discretization is
required. For this we used a method similar to the one proposed by Loewenberg &
Hinch (1996). Nodes are only convected to the minimal film thickness position; the
distance between nodes is independent of the local curvature. To ensure a smooth
distribution of the nodes (which is advantageous for the curvature calculation), the
minimal thickness inserted in the distribution function is the minimum of the local
node and the 10 nodes surrounding it (five on each side). Furthermore, the distance
between the nodes far away from the film is kept constant. Finally, since only equal-
sized drops are considered, all calculations are done for one drop only and then
mirrored around z = 0. Notice that the BIM calculations involve integration over
both surfaces.

One additional note on post-processing is pertinent. Due to the discrete nature
of the position of nodes and the additional tangential velocity, the film radius and
minimal film thickness can make step-wise position changes in time and, more notably,
the actual location of the minimal film thickness probably does not coincide with the
location of a node. To solve this problem, the minimal film thickness and film radius
were determined using higher-order approximations where, using the normal vector
and the curvature, a circle was fitted through the node where the film thickness was
minimal; the same was done for the two surrounding nodes. The line between two
nodes was projected on a linear combination of the two fitted circles, see Bazhlekov
et al. (2004) for a more detailed description. This higher-order projection was not
used to get a better estimate for the minimal film thickness when calculating the
disjoining pressure.

To show that the boundary integral method described in this section is suitable to
describe the small interfacial distances, we present the evolution of the minimal film
thickness in time for an external-flow-driven collision with Ca = 0.005 for simulations
done with 100, 200, 400 and 800 nodes per drop, see figure 2. The results converge and
provide a stable solution for hmin, even below 10−4. In table 1 the values of hmin for the
varying number of nodes are given at two moments in time. Also, the error relative
in the result for 800 nodes is given. Clearly, 100 nodes per drop are insufficient,
but for 200 and more, the differences appear to be reasonable to good. The greatest
errors relative to the 800 node simulation are at t ≈ 1.9. At this moment the film is
formed. However, as the simulations continue, the results all convergence, showing
that a relatively crude discretization (relative to the film thickness) is sufficient to give
consistent results. This is demonstrated in the inset of figure 2, where the film profile
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Figure 2. Evolution of the minimal film thickness over time for Ca = 0.005; simulations are
conducted with a varying number of nodes per drop. The inset shows the film profile for the
400 nodes case at t = 10, where the squares indicate the location of the nodes.

at t = 10 for the 400 node simulation is shown. The minimal nodal distance is of the
order of 10−3, while the film thickness is below 10−4.

4. Results and discussion
We first compare our results for buoyancy-driven (quiescent) head-on collisions of

initially spherical drops with an asymptotic theory. Subsequently external-flow-driven
collisions are studied, with and without van der Waals forces included. Finally, we
compare our data for the drainage time with experimental data and those of a simple
drainage model. The initial separation between the centres of mass of the drops,
denoted by δ, is either 3R or 4R. For the external-flow-driven collisions we use a bi-
axial extensional flow, so the prescribed velocity in scaled, axisymmetric coordinates is

u∞(x) =
(

1
2
r, −z

)T
. (4.1)

4.1. Buoyancy-driven collisions

First we consider gravity-driven collisions, which can be considered as a constant
approach force case. We take as an example a rather academic situation of two
approaching drops, one rising and one sinking. Due to the long time scales involved,
the simulation is conducted with 200 nodes per drop only, thus limiting the com-
putational time. The Bond number was set to 0.0653 (corresponding with r∞/a = 0.417
in Nemer (2003)) for both drops and simulations were started with an initial distance
between the drops of δ = 3R. Instead of showing film shapes at multiple times, we
prefer to present the evolution of three most relevant parameters in time: the film
thickness at the centreline hcent, the minimal film thickness hmin and the film radius
a, since this provides quantitative measures concerning their evolution. The evolution
of the film radius is shown in figure 3. Initially the film radius is 0, i.e. the drops
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Figure 3. Film radius over time for a buoyancy-driven collision with Bo = 0.0653.
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Figure 4. Minimal film thickness over time and film thickness at the centreline for Bo = 0.0653.
The solid lines represent the current results, the dashed lines the partly mobile asymptotes of
Yiantsios & Davis (1990). The inset shows the film profile at t = 1000.

are still spherical. As the drops approach, the film starts to form, reaching a steady
value in a relatively short time. Small-deformation theory predicts a film radius of
a =0.816Bo1/2, which yields a = 0.21 for Bo = 0.0653 which corresponds excellent
to our simulation. The evolutions of hmin and hcent, figure 4, initially show a fast
decrease. After the film is formed, both thicknesses follow a trend that is similar
to the asymptotes found by the thin-film description of Yiantsios & Davis (1990):
hcent ∼ t−1/3 and hmin ∼ t−2/3, based on a scaling argument of Jones & Wilson (1978).
For the case of constant approach force this behaviour for the minimal film thickness
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Figure 5. Rescaled centreline film thickness as a function of rescaled time. The dashed line
is the asymptote of Nemer (2003).
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Figure 6. Rescaled minimum film thickness as a function of rescaled time. The dashed line
is the asymptote of Nemer (2003).

was later generalized for low viscosity ratios by Bazhlekov et al. (2000). These trends
are not reached in our simulation until h < 10−3R, the limit where most current full
drop methods fail.

However, continuing the simulations over prolonged time spans, the results start to
diverge from the asymptotes of Yiantsios & Davis (1990), so their scaling only seems
to happen to fit the drainage behaviour over some intermediate regime. Nemer (2003)
derived an analytical solution for the constant approach case, with the long-term
asymptotes hmin = 0.495(t)−4/5 and hcent = 1.03(t)−3/5. Thin-film simulations supported
these findings, with only minor differences in the absolute value. If we plot hcent(t)

3/5

and hmin(t)
4/5 versus t , see figures 5 and 6, the results indicate that these variables seem

to become constant, verifying the asymptotes, indicated with the dashed lines. There
is also a good match with the absolute value, but slightly off, similar to the results of
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Figure 7. Film radius over time for an external-flow-driven collision with Ca = 0.04.

Nemer (2003). A final verification of these asymptotes requires much longer computa-
tions, which, given the logarithmic time axes, we were not able to conduct (the current
simulations took approximately four weeks on an AMD Athlon 64 3400+ processor).

The noise in figure 6 is due to the use of 200 nodes only. More nodes would provide
a smoother solution, but it is expected that the overall trend will remain the same.

4.2. External-flow-driven collisions

Next, external-flow-driven collisions are considered, since they are the most relevant
for practical applications. The initial drop separation δ is again 3R and simulations
are conducted with 400 nodes per drop. The evolution of the film radius is shown in
figure 7 for Ca = 0.04, and a similar evolution as for the buoyancy-driven case is found:
the film radius reaches a steady value in a relatively short time. There is a temporary
decrease, after which the film radius once again attains the same constant value as
before. This temporary decrease is not a computational artifact, and will be discussed
below. The overall trend is that the film radius is constant, which corresponds to a
constant approach force case, while for a constant approach velocity the film radius
evolves as a ∼

√
t (Abid & Chesters 1994; Klaseboer et al. 2000; Yeo et al. 2003).

Comparing the final value of the film radius for different capillary numbers, we
find that the film radius scales as Ca1/2, see figure 8. This is a common result of film
drainage theories. Even the absolute value gives excellent correspondence with the
prediction of small deformation theory (a = 2.086Ca1/2). For high capillary numbers
the film radius is slightly smaller, since small deformation theory loses its validity
here. At the lowest capillary numbers we also see a deviation, which we contribute to
the discretization, i.e. the film is only described with a few nodes (the film radius is
of the order of �s).

It was found by Cristini et al. (2001), and discussed in more detail by Nemer et al.
(2004), that the internal circulation inside the drop will eventually halt film drainage.
We compare our results to theirs and then investigate this phenomenon in more detail.
First we plot the evolution of the minimal and centreline film thickness, see figures 9
and 10, for Ca = 0.1 and 0.04 respectively. In all cases we find an initial decrease in
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Figure 8. Steady film radius in an external-flow-driven collision for multiple capillary num-
bers. The symbols are the results of our simulations. The solid line is the prediction of small-
deformation theory.
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Figure 9. Minimal and centreline film thickness over time in an external-flow-driven
collision for Ca = 0.1.

film thickness, then a minimum, followed by an increase again to arrive, after a small
overshoot, at a steady value. In Nemer et al. (2004) all length scales are scaled with
R/2, so our values would correspond to Ĝ = 0.05 and Ĝ =0.02. We converted our
data to this scaling to allow a direct comparison with their figure 1.

According to Nemer et al. (2004), the steady-state film thickness as function of the
capillary number scales as hcent = 2.43Ca3/2 and hmin =11.3Ca3. These relationships
are reproduced in figure 11 for multiple capillary numbers together with our results.
For the steady value of hmin we have plotted results of simulations where a steady state
minimum was obtained (for the lower capillary numbers, Ca < 3.10−2, we could not
fully obtain the long-term behaviour, limited by computation time). Figure 11 shows
that again we obtain an excellent match with the results of Nemer et al. (2004). Similar
to these authors, we also find that the theory underestimates the stationary value of
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Figure 10. As figure 9, but for Ca = 0.04.
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Figure 11. The stationary end values of the minimal and centreline film thickness. Also
shown is the minimum hmin obtained over time and the two predictions from Nemer et al.
(2004).

hmin by a factor 2. Also shown in figure 11 is the minimum value obtained over time of
hmin, and it is seen that for high capillary numbers the difference between the temporal
minimum and the steady-state minimal film thickness is relatively small. However,
starting from Ca =0.04 downwards the temporal minimum becomes significantly
lower, and eventually scales as Ca3 again. This temporal minimum will be discussed
in § 4.3 when van der Waals forces are taken into consideration.

As was shown in figure 7 the film radius is not constant in time. Once film drainage
is halted, the radius decreases, followed by an increase to the previous value which
corresponds to the prediction of the small deformation theory. Also hmin and hcent

reach minima before approaching their final stationary values. To illustrate this in
more detail, film profiles are shown at three different times in figure 12: at t = 12,
which corresponds to a time when hmin equals the stationary film thickness before the
minimum is obtained; at t = 38, when the minimum in time is obtained; and t = 1200
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Figure 12. The film profile for Ca = 0.04 at three moments in time.
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Figure 13. Velocity field in and around the drop for Ca = 0.04. (a) t = 2 (showing the
macroscopic vortex inside the drop). (b) t = 2 (plotting the film profile). (c) t = 5 (with rescaled
vertical axis). (d) t = 12 (hmin = hmin,stat). (e) t = 38 (minimum hmin in time is obtained here).
(f ) t = 1200 (long-term steady state).

where the film profile is stable. We observe that the film volume in the steady-state
situation is larger than at t = 12, i.e. matrix fluid was dragged into the film in this
period. One other observation is that the rim is relatively flat compared to the film
profile we find in buoyancy-driven collisions (see the inset of figure 4).

To understand what is happening in the film as film drainage is halted, we show velo-
city fields inside and outside the drops in figure 13. The external flow generates a large
vortex inside the drop (figure 13a), which remains present at all times. The pressure-
driven outflow is initially sufficiently strong to overcome the internal vortex inside
the drop and forms a small counter-rotating vortex above the film (figure 13b), and
shrinking in size over time (figure 13c). Eventually this vortex disappears altogether
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Figure 14. Minimal film thickness over time for multiple capillary numbers. The dashed
lines are to guide the eye.

as the pressure-driven drainage is no longer strong enough (figure 13d–f ), and fluid is
pumped back into the film until a final stationary situation is established. Although the
stationary end value seems to be predicted quite accurately with asymptotic theories,
the history of the film profile is complex and not described by any of those theories.

The capillary numbers investigated here, where the stationary state is an issue, are
relatively large. The theory predicts that drainage will always be halted. Recently,
Baldessari & Leal (2005) found with a small-capillary-number asymptotic analysis for
touching spherical drops, based on solving Stokes flow in tangent sphere coordinates,
that the strength of the internal circulation scales as Ca and the velocity of the
outflow as Ca1/2 (Baldessari & Leal 2005), meaning that in the limit of Ca → 0, the
internal circulation no longer plays a role. However, from the continuity equation for
the fluid in the film:

ḣr2 ∼ urhr, (4.2)

we find, with r ∼ a, a ∼ RCa1/2, and h decaying algebraically in time:

ur ∼ RCa1/2t−1. (4.3)

So the radial outflow velocity will become smaller than the velocity associated with
the internal circulation, which is independent of time and film thickness, and thus
the internal circulation eventually will always be important, even for small capillary
numbers. However, with the cubic dependence of the stationary film thickness on the
capillary number, one could question the relevance of the length scales involved for
capillary numbers approaching 0.

For low capillary numbers, for which no stationary profile has been established
yet, we find the film to drain as hmin ∼ t−4/5, see figure 14, similar to the long-term
asymptote for the buoyancy-driven case. This drainage rate, however, is only valid
in an intermediate regime, since eventually the internal circulation will take over and
form a steady-state situation, which can be seen in figure 14 for Ca = 0.005, where
the evolution of the minimum film thickness is diverting from the asymptote. But
even for the regime in which we find asymptotic drainage, the absolute value does
not correspond well with the analytical solution for the buoyancy-driven cases. As
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Figure 15. Film thickness at the centreline over time for multiple capillary numbers.
The dashed line is to guide the eye.

the drainage rate diverges from the asymptote, the film starts to drain at a faster rate.
This is a trend similar to what we find for all the lower capillary numbers (Ca < 0.04):
the drainage rate increases before the minimal film thickness is obtained, as can be
seen in figure 14 for Ca = 0.01.

For the evolution of hcent, plotted in figure 15, we find asymptotic drainage only
for Ca = 0.001. For higher capillary numbers, the development of stationary profiles
becomes significant already early in the drainage process. For Ca = 0.001, where the
internal circulation is considered not to be important and the collision is thought to
be similar to a buoyancy-driven one, we find hcent not to scale as ∼ t−3/5, as for the
buoyancy-driven case, but to an asymptote that is apparently equal to ∼ t−0.45. This
shows that an external-flow-driven collision is not fully identical to a buoyancy-driven
one, even for small capillary numbers, where the development of a stationary film
profile is not (yet) an issue, although they appear to be similar.

4.3. Van der Waals forces

If van der Waals forces are included, it is important to specify at which interfacial
distance they become dominant. This distance is called the critical film thickness
hcrit. Here the definition as suggested by Chesters (1991) is used, and is illustrated in
figure 16.

The strength of the van der Waals forces, expressed by the dimensionless Hamaker
parameter A, is varied for a large number of capillary numbers (choices for A and Ca
are motivated in § 4.4). Our results show a weak dependence of hcrit on the capillary
number. Instead of proposing a new relationship between A and hcrit, we compare our
data with published literature, in particular the work of Chesters & Bazhlekov (2000).
For the film radius in the thin-film scaling we used the small-deformation theory
estimate. It is observed that high values of A can lead to so-called nose rupture,
where coalescence can occur before a film develops (see e.g. figure 23).

Two relations between hcrit and A are given in figure 17: one derived by Chesters
(1991) obtained from a force balance yielding 2hcrit = (A/2)1/3 and the second an em-
pirical relation proposed by Chesters & Bazhlekov (2000), based on data collected with

their thin-film description: 2hcrit =
2
3
A

0.3
(the factor 2 in front of h is to compensate
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Figure 16. Minimal film thickness in time for Ca = 0.025 in the absence of van der Waals
forces (A = 0) and with van der Waals forces included (A =4.10−5). The dotted line represents
the definition of the critical film thickness according to Chesters (1991).
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Figure 17. Critical film thickness as function of dimensionless Hamaker parameter with the
data converted to the scaling of Chesters & Bazhlekov (2000). The symbols represent the
results from our simulations from various values of A and Ca (see figure 22); the lines are two
different relations from Chesters (1991) and Chesters & Bazhlekov (2000) (see text).

for a difference in scaling definition). In figure 17 it is observed that the empirical
relationship gives a better description at lower values of A, which was also reported
by Chesters & Bazhlekov (2000), while the scaling based on the force balance applies
at high values of A. Not only do the slopes of the data correspond with the relations,
but, strikingly, also the absolute values. Apparently the type of collision, or the
magnitude of the velocity outside the film, does not influence the film thickness at
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Ãcrit =1.49 (see Nemer et al. 2004).

which van der Waals forces become dominant, since the simulations by Chesters
& Bazhlekov (2000) were conducted in a constant approach case, and ours in an
external-flow-driven collision. Therefore, it will often be sufficient to track only the
evolution of the minimal film thickness in time in the absence of van der Waals forces
to determine at which point film rupture will occur.

The definition of Chesters (1991) of the critical film thickness shows an influence
of the rate of thinning dh/dt at the moment of rupture for A= 0. This is the reason
why the data at high values of A give the largest deviation from the results of
Chesters & Bazhlekov (2000) since they represent a combination of high A and low
Ca; consequently dh/dt is large and determining the critical film thickness under
these conditions is sensitive to small deviations. The same argument explains the
dependence of hcrit on the capillary number, and combining the Ca1/2 scaling of the
film radius with equation (2.17) yields hcrit ∼ Ca0.1.

If the critical film thickness is lower than the stationary film thickness or, better,
lower than the minimum hmin obtained in time, no coalescence will occur. Thus a
critical capillary number Cacrit can be defined above which coalescence is prevented.
The data for the minimal film thickness in time (see figure 11) were converted
to a dimensionless Hamaker parameter that would correspond to that critical film

thickness. We have used the scaling relationship hcrit =
2
3
A

0.3
in combination with

a =2.086Ca1/2 to find the solid line in figure 18. Nemer et al. (2004) found a critical
Hamaker parameter of Ãcrit =1.49, where

Ã = 3π2 A

h3
min

(4.4)

in our variables, and we used this result to estimate a critical capillary number, with
hmin once again based on our simulations (figure 18, dashed line). As one can see,
there are only minor differences between the two approaches to Cacrit. The critical
capillary number proves to be only weakly dependent on the dimensionless Hamaker
parameter (combining hcrit ∼ A1/3 and hmin,stat ∼ Ca3 yields Cacrit ∼ A1/9). So for head-
on collisions a critical capillary number is only an issue for large drops at large
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capillary number. Notice that the origin of the existence of a critical capillary number
is different for head-on collisions, where it is governed by a stationary state, compared
to glancing collisions where there is a finite contact time.

4.4. Drainage time

Finally, we studied head-on collisions between drops with clean interfaces and com-
pared the drainage time with recent experimental results obtained with a four-roll
mill (Yang et al. 2001; Leal 2004). Two drops are placed at a mass-centre distance
of 4R. The four-roll mill generates a planar flow but since the drops are small, an
axisymmetric bi-extensional flow will not be too different. No results were reported
for λ= 1, but similar trends were observed for viscosity ratios ranging from about
10−1 to 10 (Yoon et al. 2005).

The drainage time is defined as the time from when δ equals 2R (the minimum
film thickness at this moment is called h0) to the moment of film rupture. In the
experimental data the scaled drainage time was found to be proportional to Ca3/2

for higher capillary numbers 3.10−3 <Ca < 3.10−2, but seemingly reached a plateau
at lower values for Ca.

Based on their reported values for H (3.166.10 × 10−21 J) and σ (4.2 × 10−3 Nm−1),
we find A= 4 × 10−12 for a drop of 100 µm radius, which is the upper limit of drop
radii investigated. The simulation results are shown in figure 19. It is observed that the
drainage time indeed scales with Ca3/2 in approximately the same range of capillary
numbers, except for high capillary numbers where the slope seems to decrease. This
effect can be ascribed to the strength of the internal flow, as discussed above, where
the drainage rate increases prior to the development of a stationary film profile.
However, at lower capillary numbers the drainage time seems to scale with Ca1,
instead of becoming constant, as was found in the experiments.

One other observation is that for the lower capillary numbers there is incomplete
film formation, as shown in figure 20. Instead of following a Ca1/2 scaling, the film
radius at rupture is lower, indicating a transition to nose rupture instead of rim
rupture. Moreover, we find the starting film thickness h0, taken as δ = 2R, to scale as
∼Ca0.8 over almost the full range of capillary numbers studied (figure 21). The power
maybe a very weak function of the viscosity ratio λ (Baldessari 2004).

Next, we focus on the influence of the drop radius. With the capillary number fixed
(the equivalent shear rate G is thus inversely proportional to the drop radius), the
only parameter left to influence the radius is the dimensionless Hamaker parameter
A. Simulations for multiple values of A (or R) were conducted and the results for
the drainage time are presented in figure 22 (based on the same values for H and
σ as used for the 100 µm radius drop, these results correspond to drop radii varying
from 6.25 to 800 µm). The drainage time increases with decreasing A, since the critical
film thickness is lower. Furthermore, we find similar trends: at low capillary numbers
the drainage time scales as Ca1 and at higher capillary number as Ca3/2. However,
the capillary number at which the transition between the two scalings takes place
changes and shifts to the right for increasing A (or decreasing R). For combinations
of high capillary numbers and low A, the slope decreases at high Ca and for some
combinations we even observed no film rupture at all, but a steady situation due to
the strength of the internal flow (Ca >Cacrit). No drainage time was defined for these
situations. The film radius at rupture decreases with increasing A, figure 23, leading
to nose rupture for combinations of low Ca and high A.

The experimental data on drainage collected by Yang et al. (2001) (in the range
where the drainage time scaled as Ca3/2) collapsed into a single curve if the
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Figure 19. Drainage time as function of capillary number for A = 4 × 10−12 (solid lines are
to guide the eye).
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Figure 20. Film radius as function of capillary number with and without van der Waals
forces included. For the case with van der Waals forces the film radius is taken as the radius
at the moment of rupture.
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Figure 21. Film thickness as function of capillary number at the moment δ = 2R. The solid
line is to guide the eye.
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Figure 22. Drainage time as function of capillary number for multiple values of A.
The dashed lines are to guide the eye.
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Figure 23. Film radius at the moment of rupture as function of the capillary number for
multiple values of A.

dimensionless drainage time is scaled with R−5/4. Our data do not match this
relationship. Also, since the capillary number at which the transition in power-law
dependence takes place changes for different drop radii, a simple shift along the
vertical axis cannot yield a master curve for the complete range of capillary numbers.
We find, by fitting our simulation data, that the drainage time scales with A−0.15
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Figure 24. Scaled drainage time as a function of scaled capillary number. The symbols
correspond with the legend of figure 22. The solid lines are to guide the eye.

(or R0.3) and the capillary number with A−0.3 (or R0.6) to obtain a master curve, see
figure 24. This new scaling, however, is not in disagreement with a simple drainage
model, as will be clarified below.

We support the explanation for the change in slope of drainage time versus Ca
at low capillary numbers given by Yang et al. (i.e. the transition from coalescence
between two touching drops with a fully developed film formed between them, to
coalescence between spherical drops). However, we interpret the drainage model in
a different way, which not only explains the Ca scaling, but also the drop radius
scaling, and yields a Ca1 scaling at lower capillary numbers, instead of a constant
value. For that we consider the simple drainage model for partially mobile interfaces
(which corresponds to moderate viscosity ratios), as suggested by Chesters (1991):

−dh

dt
∼ 2(2πσ/R)3/2h2

πµdF 1/2
. (4.5)

In the case of a fully developed film the contact force F can be estimated from the
lubrication pressure in the film:

F ≈ 2π

∫ a

0

�pr dr ≈ πa2 σ

R
, (4.6)

if we assume �p ≈ σ/R.
Substituting equation (4.6) into (4.5) and rearranging, we find

−λaCa
dh

h2
∼ G dt, (4.7)

which basically is equation (19) from Yang et al.
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For a fully developed film we find the film radius by equating the contact force to
the Stokes drag force acting upon the drops:

F ≈ 6πµ0GR2, (4.8)

and thus

a ∼ RCa1/2, (4.9)

which is consistent with our simulations (see figure 8). Substituting equation (4.9) into
(4.7), and integrating from h0 to hcrit results in

tdrainG ∼ λCa3/2 R

hcrit

, (4.10)

under the assumption that hcrit � h0. This result is identical to that found by Yang
et al.

If we now substitute hcrit/R ∼ A0.3 (which is a good approximation, as can be seen
in figure 17) into (4.10), and shift the term A0.15 to the left-hand side, we find

tdrainGA−0.15 ∼ λ(CaA−0.3)3/2. (4.11)

On the other hand if the drops are spherical, we estimate the contact force in the
drainage stage to be comparable to the van der Waals forces acting on spherical
drops in near-contact motion Fvdw ∼ HR/h2 (Hamaker 1937), which, if substituted
into equation (4.5), yields after rearranging

−λR2A1/2Ca
dh

h3
∼ G dt. (4.12)

Integrating this equation results in

tdrainG ∼ λA1/2Ca

(
R

hcrit

)2

. (4.13)

As for the fully developed film, we find

tdrainGA−0.15 ∼ λCaA−0.25, (4.14)

for hcrit/R ∼ A0.3, and

tdrainGA−0.15 ∼ λCaA−0.32, (4.15)

for hcrit/R ∼ A1/3. This latter estimate seems a better scaling, since spherical drops
correspond to high values of A.

Surprisingly, we can also find the same scaling if we estimate the film radius for
spherical drops from (

a

R

)2

≈ h

R
. (4.16)

Substituting equation (4.16) into equation (4.7), integrating and rearranging yields:

tdrainGA−0.15 ∼ λCaA−0.3 (4.17)

for hcrit/R ∼ A0.3. This, however, requires the assumption that the pressure in the film
for spherical drops is comparable to the capillary pressure σ/R (as it would be in a
fully developed film), but it is generally assumed to be much lower.

As can be seen in figure 24, plotting tdrainGA−0.15 as function of CaA−0.3 seems to
capture both regimes quite well, yielding one master curve. It is surprising that this
drainage model gives an accurate scaling relationship for the drainage time, despite
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its simplicity. (The model also predicts a drainage rate (h ∼ t−1) but this rate is not
in agreement with our simulations (figure 14)). Another way to predict the drainage
time, is to equate to the van der Waals stresses at the moment of rupture to the
capillary stresses:

H/h3
min,crit ∼ σ/R, (4.18)

or

hmin,crit ∼ Ca−1A1/3, (4.19)

and with a drainage rate of h ∼ t
−4/5

, we find

Gtdrain ∼ Ca7/4A−5/12. (4.20)

In figure 22 one can see that for A= 6.25 × 10−14 around Ca =3 × 10−3 the drainage
time indeed seems to scale more strongly than Ca3/2. But the regime of drainage where
this could be the case is very limited. The capillary number should be small enough
that the h ∼ t−4/5 drainage behaviour can be established, and A should be small
enough that rupture will not occur before this asymptote is reached but not so small
that the internal circulation affects the film drainage (Ca <Cacrit). Equation (4.20)
can be rewritten as

GtdrainA
−0.15 ∼ (CaA−0.32)7/4. (4.21)

This scaling is not observed in figure 24, since there is only a limited range of
combinations of Ca and A in which it is found.

There is a difference between the Ca1 scaling we find at lower capillary numbers, and
the plateau value found in experiments, where the drainage time was apparently not
only independent of the capillary number, but also independent of the drop radius.
There might be physical reasons to explain a plateau at lower capillary numbers
(Baldessari 2004), but we also found that at low capillary numbers the drainage
time is very sensitive to accurately determining the starting time when δ = 2R. Our
simulations even required accurate interpolation between two nodes when calculating
the location of the mass centres, a resolution that might not be reached with the
optical microscope used in the experiments ( ≈ 1 µm/pixel). Furthermore, a constant
drainage time cannot hold in the limit of Ca → 0, as eventually hcrit becomes larger
than h0 and the drainage time would be zero (or even negative) for a non-zero
capillary number.

Our scaling leaves us with the question of why CaA−0.3 is the independent variable,
or, in other words, why do we have to include a dependence on drop radius in both
the drainage time and the (rescaled) capillary number. Currently we do not have an
answer to this question.

Finally, by equating the drainage rate to the external approach velocity, RG, one
can estimate h0, although the definition is not similar to the one used above. This
yields for the partially mobile case in combination with equation (4.8)

h0 ∼ RCa3/4. (4.22)

The Ca0.8 scaling we find here (figure 21) is not different.

5. Conclusions
We simulated head-on collisions of viscous drops with the same viscosity as the

matrix fluid using a non-singular boundary integral method. A contour-integral
representation for the single-layer potential proved to have sufficient stability and



Axisymmetric boundary integration simulations of film drainage 89

accuracy to simulate film drainage where the film thickness was 10−4 times smaller
than the undeformed drop radius, capturing both the inner and the outer problem
of drop coalescence. With this method various results from asymptotic theories
could be reproduced, but in most cases we only found a match in a limited range
of parameters. The constant-approach-force case, as often simulated with thin-film
descriptions, corresponds to a buoyancy-driven collision. The long-term asymptotic
drainage behaviour found is similar to a recently derived analytical solution, and not
the previously assumed drainage rate based on a scaling argument. External-flow-
driven collisions also yield this long-term drainage behaviour, but only for low
capillary numbers, and before the drainage is halted altogether. For the centreline
thickness, the film drainage was different than for buoyancy-driven collisions. This
means that buoyancy-driven collisions are fundamentally different from external-
flow-driven collisions, as has been recently shown. Also if van der Waals forces are
included we obtain good correspondence with asymptotic theories, when investigating
the critical film thickness as a function of the Hamaker parameter. Finally, the time
to drain the film for head-on collisions is investigated as a function of the capillary
number and the drop radius. In an empirical way a rather unusual scaling relation
is found that is not in disagreement with a simple drainage theory: the independent
variable is, however, CaA−0.3 and not the capillary number itself. Furthermore there is
a transition in the power-law dependence from 1 to 1.5, corresponding to a transition
from a collision between spherical drops to film drainage in a fully developed film.
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